Last time:

$$
\begin{aligned}
& \Gamma_{N, \infty}[x, K]=\Gamma_{N, \infty}[x, 0]+\int d^{4} x D_{N}^{n}\left[x_{i} x\right] K_{n}(x) \\
& S_{R}[x, K]=S_{R}[x]+\int d^{4} x \Delta^{n}\left[x_{i} x\right] K_{n}(x) .
\end{aligned}
$$

Then equation

$$
\left(S_{R}, T_{N, \infty}\right)=0
$$

becomes
(1) $\int d^{4} x\left[\Delta^{n}\left(x_{i} x\right) \frac{\delta_{L} \Gamma_{N_{1} \infty}[x, 0]}{\delta x^{n}(x)}+D_{N}^{n}\left[x_{i} x\right] \frac{\delta_{L} S_{R}[x]}{\delta x^{n}(x)}\right]=0$ and
(2) $\int d^{4} x\left[\Lambda^{n}\left(x_{i} x\right) \frac{\delta_{L} D_{N}^{m}\left(x_{i} y\right)}{\delta x^{n}(x)}+D_{N}^{n}\left(x_{i} x\right) \frac{\delta_{L} \Delta^{m}(x ; y)}{\delta x^{n}(x)}\right]=0$

Now introduce the quantities

$$
\Gamma_{N}^{(\varepsilon)}[x] \equiv S_{R}[x]+\varepsilon \Gamma_{N, \infty}[x, 0]
$$

and

$$
\Delta_{N}^{(\varepsilon) n}(x) \equiv \Delta^{n}(x)+\varepsilon D_{N}^{n}(x)
$$

with ε infinitesimal.
Then equation (1) tells us that $\Gamma_{N}^{(s)}[x]$ is invariant under the tref.

$$
\begin{equation*}
X^{n}(x) \mapsto X^{n}(x)+\theta \Delta_{N}^{(\varepsilon) n}(x) \tag{3}
\end{equation*}
$$

while eq. (2) gives together with $\delta_{\theta} \Delta^{n}(x)=0$ that tref. (3) is nilpotent!
What is this nilpotent tref.?
TN,N consists of terms of $\operatorname{dim} .4$ or less (power-connting renormalizable)
\rightarrow. D_{N}^{n} and $\Delta_{N}^{(\varepsilon) n}(x)$ have at most dim of original BRST tref. $\Delta^{n}(x)$.

- also same Lorentz tref. properties and ghost numbers as $\Delta^{n}(x)$.
\rightarrow most general form of tref. (3):

$$
\begin{aligned}
& \psi \longmapsto \psi+i \theta \omega^{\alpha} T_{\alpha} \psi \\
& A_{\alpha \mu} \longmapsto A_{\alpha \mu}+\theta\left[B_{\alpha \beta} \partial_{\mu} \omega_{\beta}+D_{\alpha \beta \gamma} A_{\beta \mu} \omega_{\gamma}\right] \\
& \omega_{\alpha} \longmapsto \omega_{\alpha}-\frac{1}{2} \theta E_{\alpha \beta \gamma} \omega_{\beta} \omega_{\gamma}
\end{aligned}
$$

where T_{α} is some matrix, and $B_{\alpha \beta}, D_{\alpha \beta \gamma}$, and $E_{\alpha \beta \gamma}$ are constants ($E_{\alpha \beta \gamma}$ anti-sym. in β, γ).
Further,

$$
\omega_{\alpha}^{*} \mapsto \omega_{\alpha}^{*}-\theta h_{\alpha}, \quad h_{\alpha} \longmapsto h_{\alpha}
$$

(linear, hence unchanged).
Imposing condition of nilpotence gives

$$
\text { - } \begin{aligned}
& E_{\alpha \beta \gamma} E_{\beta \delta \varepsilon}+E_{\alpha \beta \varepsilon} E_{\beta \gamma \delta}+E_{\alpha \beta \delta} E_{\beta \varepsilon \gamma}=0 \\
& \rightarrow E_{\alpha \beta \gamma}=a C_{\alpha \beta \gamma}, \text { a constant }
\end{aligned}
$$

- $D_{\alpha \beta \gamma} D_{\beta \delta \varepsilon}-D_{\alpha \beta \varepsilon} D_{\beta \delta \gamma}=a C_{\beta \varepsilon \gamma} D_{\alpha \delta \beta}$

$$
\rightarrow D_{\alpha \beta \gamma}=b C_{\alpha \beta \gamma}
$$

- $B_{\alpha \beta} E_{\beta \gamma \delta}=D_{\alpha \beta \delta} B \beta \gamma \rightarrow B_{\alpha \beta}=a b \delta_{\alpha \beta}$
(b cost.)

$$
\cdot\left[T_{\beta}, T_{\gamma}\right]=i E_{\alpha \beta \gamma} T_{\alpha} \rightarrow T_{\alpha}=a T_{\alpha}
$$

Summarizing, we get the following turfs.

$$
\begin{aligned}
& \psi \longmapsto \psi+i a \theta \omega^{\alpha} t_{\alpha} \psi_{1} \\
& A_{\alpha \mu} \longmapsto A_{\alpha \mu}+a \theta\left[b \partial_{\mu} \omega_{\alpha}+C_{\alpha \beta \gamma} A_{\beta \mu} \omega_{\gamma}\right] \\
& \omega_{\alpha} \mapsto \omega_{\alpha}-\frac{1}{2} a \theta C_{\alpha \beta \gamma} \omega_{\beta} \omega_{\gamma}, \\
& \omega_{\alpha}^{*} \longmapsto \omega_{\alpha}^{*}-\theta h_{\alpha}, \\
& h_{\alpha} \longmapsto h_{\alpha} .
\end{aligned}
$$

Next, we want to use this symmetry to constrain

$$
T_{N}^{(\varepsilon)}=\int d^{4} \times \mathcal{L}_{N}^{(\varepsilon)}
$$

with $\mathcal{Z}_{N}^{(\varepsilon)}$ a local function of $\operatorname{dim} \leq 4$
$\mathcal{L}_{N}^{(\varepsilon)}$ must be invariant under all "linear" symmetries of original Lagrangian:

$$
\begin{aligned}
\mathscr{L}_{N E \omega}= & \mathcal{L}_{M}-\frac{1}{4} F_{\alpha}^{\mu \nu} F_{\alpha \mu \nu}-\partial_{\mu} \omega_{\alpha}^{*} \partial^{\mu} \omega_{\alpha} \\
& +C_{\alpha \beta \gamma}\left(\partial_{\mu} \omega_{\alpha}^{*}\right) A_{\gamma}^{\mu} \omega_{\beta}+h_{\alpha} \partial_{\mu} A_{\alpha}^{\mu}+\frac{1}{2} \xi h_{\alpha} h_{\alpha} .
\end{aligned}
$$

(i) Lorentz invariance
(ii) Global gauge invariance

$$
\begin{aligned}
& \delta \psi_{e}(x)=i \varepsilon^{\alpha}\left(t_{\alpha}\right)_{e}^{m} \psi_{m}(x), \\
& \delta A_{\mu}^{\beta}(x)=C_{\beta \gamma \alpha} \varepsilon^{\alpha} A^{\gamma}(x), \\
& \delta \omega_{\beta}(x)=C_{\beta \gamma \alpha} \varepsilon^{\alpha} \omega_{\gamma}(x), \\
& \delta \omega_{\beta}^{*}(x)=C_{\beta \gamma \alpha} \varepsilon^{\alpha} \omega_{\gamma}^{*}(x), \\
& \delta h_{\beta}(x)=C_{\beta \gamma \alpha} \varepsilon^{\alpha} h_{\gamma}(x),
\end{aligned}
$$

with const. infinitesimal ε^{α}.
(iii) Autighost translation invariance

$$
\omega_{\alpha}^{*}(x) \longrightarrow \omega_{\alpha}^{1}(x)+c_{\alpha}
$$ cost.

(iv) Ghost number conservation $\left(+1\right.$ for $\omega_{\alpha},-1$ for $\omega_{\alpha}^{*}, 0$ fer all other fields)
\rightarrow construct most general Lagrangian $\mathcal{I}_{N}^{(s)}$ that is of dim. 4 or less, invariant under above linear toff., and BRST invariant under (4):
(iii) $\rightarrow \omega_{\alpha}^{*}$ appears only in the for $\partial_{m} \omega_{\alpha}^{*}$
$(i v) \rightarrow \omega_{\alpha}$ and ω_{α}^{*} appear in pairs

$$
\omega_{\alpha} \partial_{\mu} \omega_{\beta}^{*}
$$

(i) $\longrightarrow \omega_{\alpha} \partial_{\mu} \omega_{\beta}^{*}$ is not Yorentz invariant, so we must take

$$
\partial_{\mu} \omega_{\alpha}^{*} \partial^{\mu} \omega_{\beta} \text { or } \partial_{\mu} \omega_{\alpha}^{*} A_{\gamma}^{\mu} \omega_{\beta}
$$

$(i) \rightarrow h_{\alpha}$ is of $\operatorname{dim}+2$, so we get

$$
h_{\alpha} h_{\alpha} \text { or } h_{\alpha} A_{\beta}^{\mu} A_{\gamma \mu} \text { or } h_{\alpha} \partial_{\mu} A_{\alpha}^{\mu}
$$

$y_{N}^{(\varepsilon)}$ will also contain renormalizable terms involving only matter and gauge fields.
\rightarrow denote by $\mathcal{L}_{4, A}$
(ii) \rightarrow most general form:

$$
\begin{align*}
\mathcal{L}_{N}^{(\xi)} & =\mathcal{Z}_{\psi A}+\frac{1}{2} \xi^{\prime} h_{\alpha} h_{\alpha}+c h_{\alpha} \partial_{\mu} A_{\alpha}-e_{\alpha \beta \gamma} h_{\alpha} A_{s}^{m} A_{m} \\
& -Z_{\omega}\left(\partial_{\mu} \omega_{\alpha}^{*}\right)\left(\partial_{\mu} \omega_{\alpha}\right)-d_{\alpha \beta \gamma}\left(\partial_{\mu} \omega_{\alpha}^{*}\right) \omega_{\beta} A_{\gamma}^{m}, \tag{5}
\end{align*}
$$

where $\left\{^{\prime}, Z_{\omega}, c, d_{\alpha \beta \gamma}\right.$, and $e_{\alpha \beta \gamma}$ are unknown constants
Imposing BRST invariance on (5) gives:

- cancellation of $\theta \partial_{n} h_{\alpha} \partial \omega_{\omega_{\alpha}}$

$$
\rightarrow c=Z_{w} / a b
$$

- cancellation of $\theta_{\mu} h_{\alpha} \omega_{\beta} A_{\gamma}$

$$
\rightarrow d_{\alpha \beta \gamma}=-\left(Z_{\omega / b}\right) c_{\alpha \beta \gamma}
$$

- $\theta \partial_{\mu} \omega_{\alpha}{ }^{*} \omega_{\beta} \omega_{\gamma} A_{\delta}^{\mu}$ automatically cancel by Jacobi identity
- cancellation of $\theta h_{\alpha} \partial_{\mu} \omega_{\beta} A_{\gamma}^{m}$ gives

$$
e_{\alpha \beta \gamma}=0 .
$$

- the effect of $\Delta^{(\xi)}$ BRST-trf. an $\mathcal{L}_{\varphi, A}$ is a gauge tref. with par.
$\varepsilon_{\alpha}=a b \theta \omega_{\alpha}$ and gauge coupling re normalized by $\frac{1}{6}$ (i.e. $\left.t_{\alpha} \longmapsto \tilde{t}_{\alpha} \equiv t_{\alpha} / b, C_{\alpha \beta \gamma} \longmapsto \widetilde{C}_{\alpha \rho \gamma} \equiv C_{\alpha \beta \gamma} / b\right)$
$\rightarrow \mathcal{L}_{4, A}$ is grange invariant
\rightarrow most general renormalizable Lagrangian allowed by the symmetries

$$
\begin{aligned}
\mathcal{L}_{N}^{(\varepsilon)}= & -\frac{1}{4} Z_{A} \widetilde{F}_{\alpha}^{\mu \nu} \widetilde{F}_{\alpha \mu \nu}-Z_{\psi} \bar{\psi} \gamma \mu\left[\partial_{\mu}-i F_{\alpha} A_{\alpha \mu}\right] \psi \\
& \left.-\bar{\psi} m_{\mu} \psi+\frac{1}{2}\right\}^{\prime} h_{\alpha} h_{\alpha}+\left(Z_{\omega} / b a_{a}\right) h_{\alpha} \partial_{\mu} A_{\alpha} \\
& -Z_{\omega}\left(\partial_{\mu} \omega_{\alpha}^{*}\right)\left(\partial_{\mu} \omega_{\alpha}\right)+Z_{\omega} \tau_{\alpha \beta \gamma}\left(\partial_{\mu} \omega_{\alpha}^{x}\right) \omega_{\beta} A_{\gamma}^{\mu}
\end{aligned}
$$

\rightarrow apart from a few new coefficients, this is the same Lagrangian as before!
\rightarrow infinities can be absorbed in counterterms of original Lagrangian

